
Product Range

Siegling Prolink modular belts

Conventional conveyor belts are only suitable for certain conveying and processing jobs because of their structure. Which is why Siegling Prolink plastic modular belts are a perfect addition to the Siegling conveyor belt range. Our vast experience in light materials handling is not just a guarantee of excellent product quality, but also of competent assistance, rapid availability and qualified service.

Adaptable due to modular structure

Siegling Prolink can offer various different module designs, materials and accessories, all combinable with one another. So Siegling Prolink modular belts can be customised to suit the conveying or production job in question. We'll find the right solution, even for highly specialised applications.

Siegling Prolink is used effectively in conveying:

- meat, fish and poultry products
- vegetables
- baked goods of all types
- packages and furniture
- vehicles and skids
- people

Here Siegling Prolink often takes on processing jobs that go above and beyond actual conveying.

Economical to run

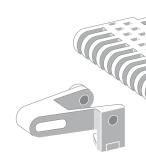
Modular belts are robust and durable. They handle conveying and processing tasks, not possible with conventional belting material.

They can be made endless on the conveyor; if damage occurs individual modules can be quickly exchanged. This minimises down times. Different lengths and widths are possible. Functional modules can be inserted at any time, so even belt properties can be changed whenever required.

Content

The Siegling Prolink system	4	
Linear modules		
Series 1	6	
Series 2	8	
Series 3	10	
Series 4	12	
Series 6	14	
Series 7	16	
Curved modules		
Series 5	18	
Series 5	20	
Overview of areas used	22	
Type key/keys/notes	24	
Materials/permeability/		
temperature ranges/		
HACCP types	25	

Modules with a smooth surface make accumulating and palletizing bottles on the conveying line possible.


Siegling Prolink curved belts are ideal for spacesaving drying or freezing.

Siegling Prolink is a tried and tested belt, processing fish and seafood – both on- and offshore.

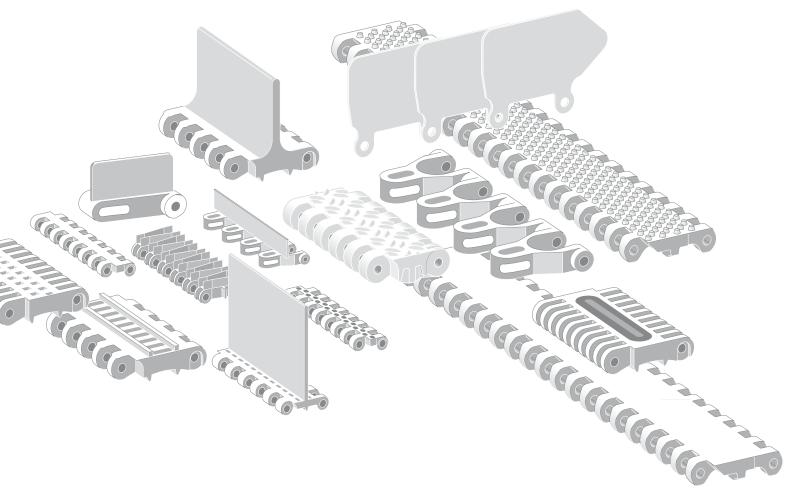
As worker belts in the automotive industry, Siegling Prolink modules are safe to stand on.

The Siegling Prolink system: Every belt's a specialist

Modular variety in seven series

The Siegling Prolink system consists of seven series that can handle numerous conveying and processing tasks, ranging from "delicate" to "heavy duty".

The individual modules are flexibly connected with one another and made endless by inserting hinge pins.


This means:

- variable widths and lengths
- they are easy to repair
- low stock levels are required

Existing conveyors can easily be converted to Siegling Prolink. Apart from the standard colours, any colours can be supplied on request.

We can send data sheets and further technical information about the individual series on request.

The module types presented are not available in some module/material/colour combinations in the standard version. Just ask us if you require more information.

Functional details

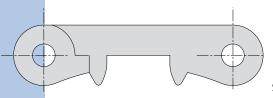
To turn the belt into a true specialist, profiles, side guards and further accessories, such as modules with different patterns, belong to almost all the series. Special modules and individual accessories for special applications are also available that we can develop according to your specifications.

Just contact us.

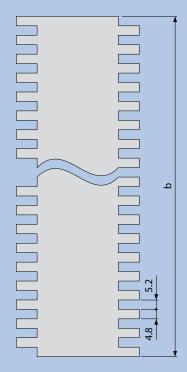
Numerous materials

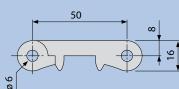
Apart from the module's design, selecting the material is another way of customising the belt to suit the conveying and processing task.

All materials have been tried and tested in the most varied of industrial environments and their own exceptional properties mean they can handle a wide range of applications.


The individual Siegling Prolink series are available in several materials as a standard (see each series for more information.) But they can also be produced in all materials listed on page 25.

Special HACCP types


New legal requirements are forcing food manufacturers to adopt increasingly stringent hygiene procedures.


Conventional conveyor and processing belts often cannot comply with these requirements. But Siegling Prolink modular belts are designed to effectively support your HACCP concept (see page 25).

Linear modules, pitch 50 mm

Scale 1:1

Main dimensions in mm (Scale 1:2)

Pitch

50 mm

Belt width min.

50 mm 300 mm for belts with FT-pattern (side modules only available without FT-pattern)

Width increments

in increments of 10 mm

Hinge pins

made of plastic, special type made of stainless steel

Certification

For certification see page 25.

Robust types for use under tough operating conditions. Even for high levels of pull.

Special properties

- designed for high levels of pull
- small width increments
- small eyelets creating even distribution of force

Areas used

- conveying heavy unit goods
- logistics (postal packages)
- conveying punching waste
- conveying rubbish
- worker belts
- skiing belts

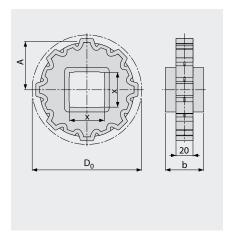
Module types

LM 50/0 S1

The heavy duty belt with closed, smooth surface.

LM 50/20 S1

The heavy duty belt with half-open smooth surface.

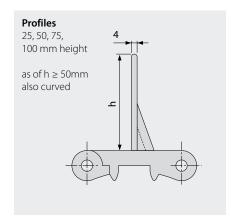

LM 50/0 S1 NS

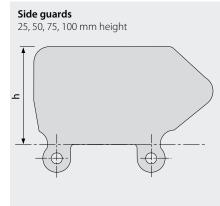
With closed surface and anti-skid pattern, e.g. for use in the automotive industry.

LM 50/0 S1 FT

With closed surface and friction inserts, e.g. for inclined conveying of cardboard boxes.

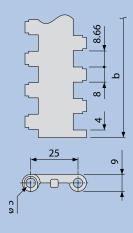
Materials	Colours	Permeability [%]	C ₃ max [N/mm]	Weight [kg/m²]
PE PP POM	W W W/AT	0 0	18 30 40	10.1 9.4 14.4
PE PP POM	TR W W	20 20 20	18 30 40	8.8 8.2 12.7
PE PP POM POM HC	W W W/AT/Y AT	0 0 0	18 30 40 40	11.2 10.4 16.0 16.0
PE PP POM	W W	0 0	18 30 40	10.1 9.4 14.4

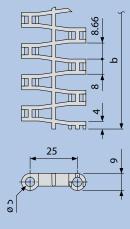



Type/ no. of teeth	LS 50-6	LS 50-8	LS 50-10	LS 50-12	LS 50-16
b [mm]	40	40	40	40	40
$D_0[mm]$	100	131	162	193	256
A [mm]	42	57	73	89	120
m [g]	100	150	210	350	490
x [mm] (metric	shaft	recess	ses)		
30	•	•	•		
40					
60					
80					
113				•	
135				•	
x ["] (imperial	shaft	reces	ses)		
1	•	•	•		
1.5					
2.5					

- Shaft shape round Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module

The fold-out page at the back will explain all abbreviations used and the type key.


Profiles/side guards



Scale 1:1

Linear modules, pitch 25 mm

Main dimensions in mm (Scale 1:2)

Pitch

25 mm

Belt width min.

50 mm

100 mm for belts with FT-pattern

Width increments

in increments of 16.66 mm

Hinge pins

made of plastic

Certification

For certification see page 25.

Drum motor

Power transmission using drum motors with rubber coating and profiles applied is possible. Just contact us.

For conveying light goods.

Special properties

- hinges open wide for easy cleaning
- extremely permeable types for effective drainage/drying
- small contact areas possible for the goods conveyed

Areas used

- conveying light unit goods
- small components when processing work pieces
- in-feed/discharge belts for automation tasks
- processing fruit and vegetables
- processing poultry

Module types

LM 25/0 S2

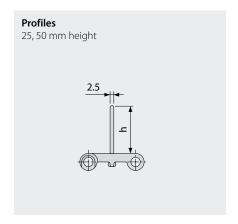
Light belt with smooth surface. Suitable for conveying light goods.

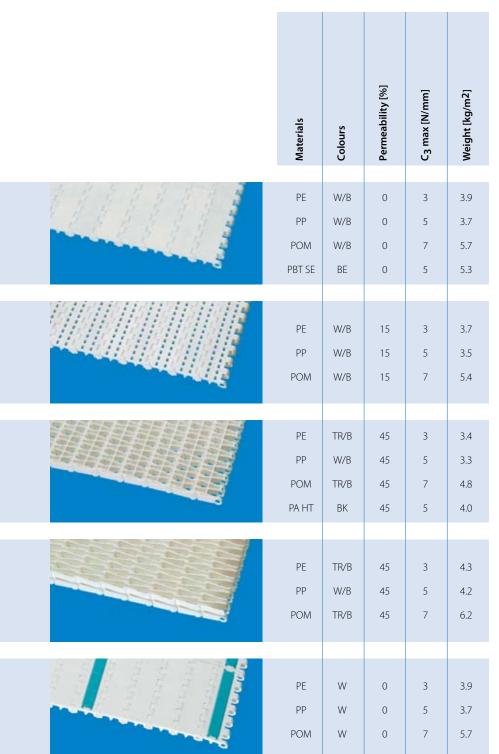
LM 25/15 S2

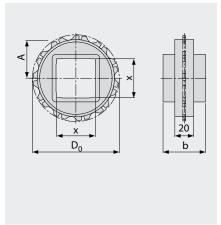
The perforations make it ideal for use in the food industry (drainage), especially for conveying vegetables, fruit, poultry and fish.

LM 25/45 S2

Its high level of permeability means it is superb for use in the food industry during cleaning, cooling and drying.

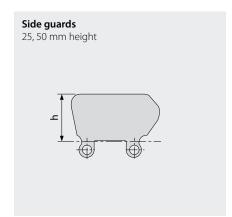

LM 25/45 S2 RR

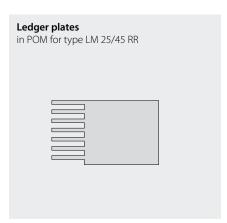

Used with ledger plates, ideal for moving products off and on to the belt.


LM 25/0 S2 FT

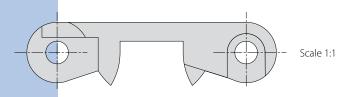
Friction inserts keep it skid-free, even in inclined conveying.

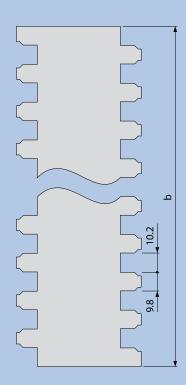
Profiles/side guards/accessories

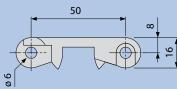




Type/ no. of tee	eth	LS 25-6	LS 25-11	LS 25-19	LS 25-20	
b [mm]		25	40	40	40	
$D_0[mm]$		51	90	154	161	
A [mm]		21	40	72	76	
m [g]		22	80	160	170	
x [mm] 25	(metric sl	haft	recess	ses)		
30			•			
40						
60						
80						
x ["] (ir	nperial sl	haft	recess	ses)		
3/4		•				
1)/				
1.5			•	•		
2.5						


- Shaft shape round
 - Shaft shape square
- A Distance centre of shaft/top edge support
- **m** Weight of the module


The fold-out page at the back will explain all abbreviations used and the type key.



Linear modules, pitch 50 mm

Main dimensions in mm (Scale 1:2)

Pitch

50 mm

Belt width min.

40 mm

Width increments

in increments of 20 mm $\,$

Hinge pins

Made of plastic, as a special type made also in blue or stainless steel

Certification

For certification see page 25.

Drum motor

Power transmission using drum motors with rubber coating and profiles applied is possible. Just contact us.

For conveying light of goods that have to stand firmly.

Special properties

- very smooth surface
- very easy to clean
- ideal for accumulating conveyors
- profiles up to the belt edge possible

Areas used

- conveying light unit goods
- food industry
- filling bottles
- conveying tyres

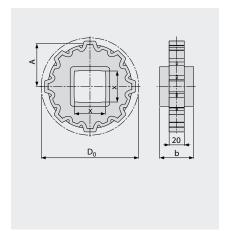
Module types

LM 50/0 S3

For all standard applications. Easy to clean.

LM 50/20 S3

Due to its permeability, exceptionally suitable for use in food industry during cooling and draining.

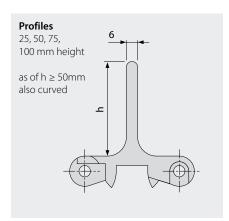

LM 50/0 S3 LR

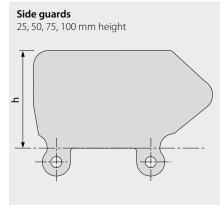
With the same properties as LM 50/0 S3. Lateral ribbing for better grip in inclined conveying.

LM 50/20 S3 LR

With the same properties as LM 50/20 S3. Lateral ribbing for better grip in inclined conveying.

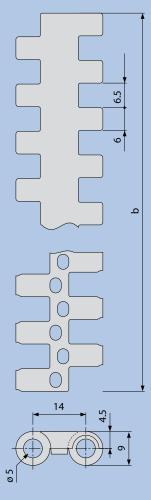
	Materials	Colours	Permeability [%]	C ₃ max [N/mm]	Weight [kg/m2]
The state of the s	PE	W/B	0	6	7.5
	PP	W/B	0	12	7.1
	POM	W/B	0	16	10.1
THIRINIAN TO BE A SECOND TO SECOND T	PE	W/B	20	6	7.3
	PP	W/B	20	12	6.5
	POM	W/B	20	16	9.5
	PE	W/B	0	6	7.6
	PP	W/B	0	12	7.2
	POM	W/B	0	16	10.3
	PE	W/B	20	6	7.4
	PP	W/B	20	12	6.6
	POM	W/B	20	16	9.7




Type/ no. of teeth	LS 50-6	LS 50-8	LS 50-10	LS 50-12	LS 50-16
b [mm]	40	40	40	40	40
$D_0[mm]$	100	131	162	193	256
A [mm]	42	57	73	89	120
m [g]	100	150	210	350	490
x [mm] (metric 30 40 60 80 113	shaft •	recess	ses) ● ■	-	-
135				•	
x ["] (imperial s	haft r	ecesse	es)		
1	•	•	•		
1.5					
2.5					

- Shaft shape round Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module

The fold-out page at the back will explain all abbreviations used and the type key.


Profiles/side guards

Scale 1:1

Linear modules, pitch 14 mm

Main dimensions in mm (Scale 1:1)

Pitch

14 mm

Belt width min.

25 mm

Width increments

in increments of 12.5 mm

Hinge pins

made of plastic

Certification

For certification see page 25.

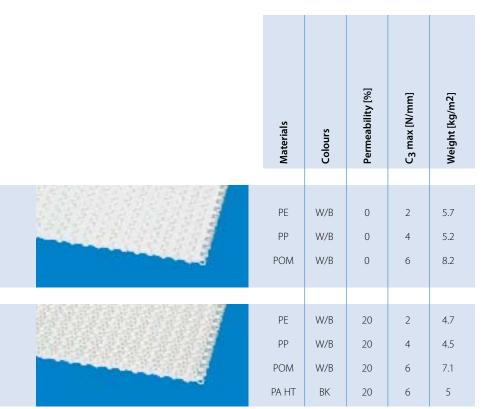
For conveying small objects, requiring small reversing drum diameter.

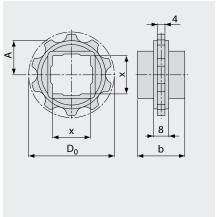
Special properties

- suitable for knife edges
- belt guidance around 18 mm drum possible
- robust type despite a small pitch

Areas used

- conveying small unit goods
- conveying with small transfer radii
- caked goods and confectionery
- processing fruit and vegetables
- paper/corrugated cardboard

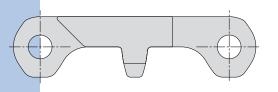

Module types


LM 14/0 S4

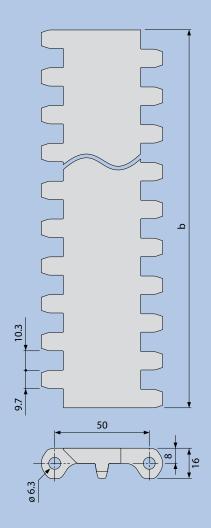
Closed surface, higher level of resistance to break, suitable for knife edges. Especially suitable for conveying small unit goods.

LM 14/20 S4

Open surface, suitable for knife edges. Particularly suitable for baked goods and confectionery.



Type/ no. of teeth	LS 14-10	LS 14-12	LS 14-18	LS 14-26	LS 14-35
b [mm]	25	25	40	40	40
$D_0[mm]$	45	55	81	116	156
A [mm]	18	23	35	53	73
m [g]	20	33	75	135	230
x [mm] (metric 20 25 30 40 60 113	shaft ●/■	recess	ses)	-	•
x ["] (imperial	shaft	reces	ses)		
3/4	•	_			
1					
1.5					
2.5					


- Shaft shape round
- Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module

The fold-out page at the back will explain all abbreviations used and the type key.

Linear modules, pitch 50 mm

Scale 1:1

Main dimensions in mm (Scale 1:2)

Pitch

50 mm

Belt width min.

40 mm

Width increments

in increments of 20 mm

Hinge pins

Made of plastic or stainless steel.

Certification

For certification see page 25.

Drum motor

Power transmission using drum motors with rubber coating and profiles applied is possible. Just contact us.

Especially developed for applications in the food industry. Guarantees efficient cleaning and long-lasting safety when handling meat, fish and poultry, where hygiene is vital.

Special properties

- particularly easy to clean with smooth surfaces and easy-clean module design
- a standard HACCP type with preventative protection from microbial decomposition; no biocides
- high level of resistance to incision with strong modules and very thick eyelets
- good grip and no sticking with nubtop and cone-top types
- individual module width 400 mm

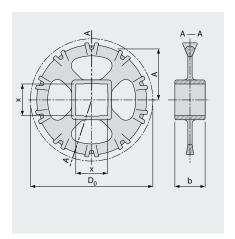
Areas used

- food industry
- meat and poultry processing
- jointing belts
- conveying bones

Module types

LM 50/0 S6

The easy-to-clean belt with closed, smooth surface, so products can be shifted easily.

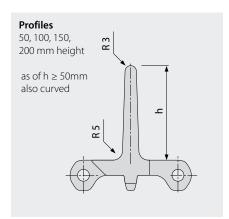

LM 50/0 S6 NT

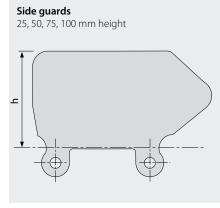
The easy-to-clean belt with cylindrical structural elements on the surface, providing gentle grip and good release properties.

LM 50/0 S6 CT

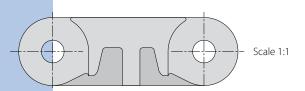
The easy-to-clean belt with pyramid-shaped structural elements on the surface, providing excellent grip even in inclined conveying.

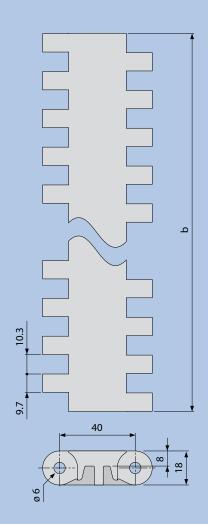
	Materials	Colours	Permeability [%]	C ₃ max [N/mm] (Plastic pins)	C ₃ max [N/mm] (Stainless steel pins)	Weight [kg/m²] (Plasticpins)	Weight [kg/m²] (Stainless steel pins)
The state of the s	PE POM	W/B W/B	0	20 30	- 36	9.4 13.4	- 17.1
	PE POM	W/B W/B	0	20	- 36	9.6 13.7	- 17.4
	PE POM	W/B W/B	0	20	- 36	9.5 13.5	- 17.2




Type/ no. of	teeth	LS 50-6	LS 50-8	LS 50-10	LS 50-12	
b [mi	m]	40	40	40	40	
$D_0[m]$	m]	101	132	163	195	
A [mi	m]	42	58	74	89	
m [g]		89	114	142	171	
x [m 30	m] (metric	shaft	recess	ses)		
40		Ť	Ĭ			
60				_		
80						
113	3			•		
135)				•	
x ["]	(imperial	shaft	recess	ses)		
1		•	•	•		
1.5						
2.5						

- Shaft shape round Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module


The fold-out page at the back will explain all abbreviations used and the type key.


Profiles/side guards/module design

Linear modules, pitch 40 mm

Main dimensions in mm (Scale 1:2)

Pitch

40 mm

Belt width min.

40 mn

360 mm for belts with FT-pattern (side modules only available without FT-pattern)

Width increments

in increments of 20 mm

Hinge pins

Made of plastic or stainless steel.

Certification

For certification see page 25.

The strongest belt type in the Siegling Prolink range. Particularly suitable for punctual loads and where height is restricted. For use in tough operating conditions.

Special properties

- robust and durable, due to 18 mm thickness, ribbing the whole way up and plenty of surface space
- modules very strong, excellent teeth engagement
- quick to fit, reliable splicing thanks to locking system with clips
- small pitch minimises the chordal action and makes small reversing drum diameters possible

Areas used

- automotive industry (worker belt, skid conveying, vehicle conveying)
- industrial production (conveying boards, pallets)
- sports (personal conveyor belts)

Module types

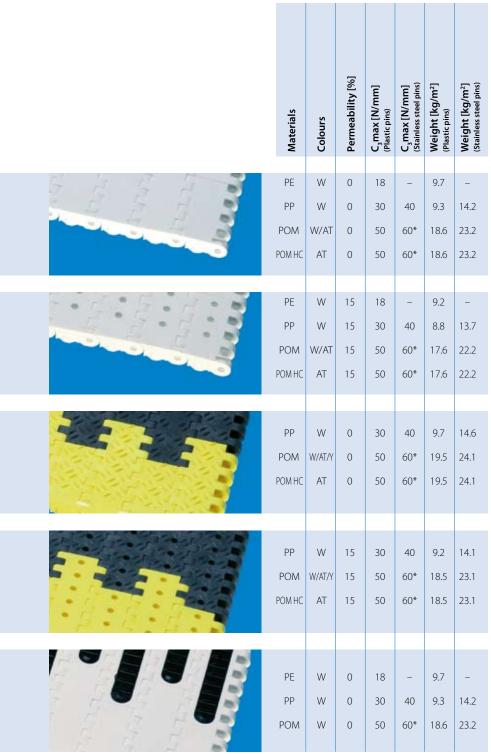
LM 40/0 S7

The strongest belt of all Siegling Prolink series with closed, smooth surface.

LM 40/15 S7

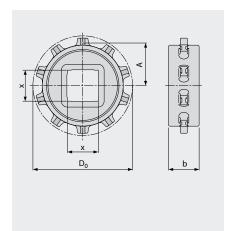
The strongest belt of all Siegling Prolink series with half-open, smooth surface.

LM 40/0 S7 NS


With closed surface and anti-skid pattern, e.g. for use in the automotive industry.

LM 40/15 S7 NS

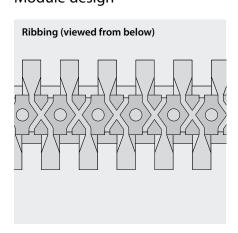
For drainage in the belt and at the same time high level of resistance to slipping over, e.g. on water lines.


LM 40/0 S7 FT

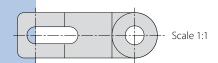
With closed surface and friction inserts, e.g. for inclined conveying or to prevent jerky movements effectively.

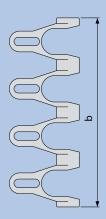
When using gear rings made of stainless steel the C,max value increases to 80 N/mm.

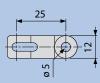
Sprockets

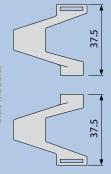


Type/ no. of teeth	LS 40-10	LS 40-16	LS 20-20	
b [mm]	40	40	40	
$D_0[mm]$	130	206	257	
A [mm]	56	94	119	
m [g]	222	502		
x [mm] (metric	shaft	reces	ses)	
40				
60				
80				
90				
x ["] (imperia	l shaft	reces	ses)	
1.5				
2.5				


- Shaft shape round
- Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module


The fold-out page at the back will explain all abbreviations used and the type key.


Module design



Curved modules, pitch 25 mm

Main dimensions in mm (Scale 1:2)

Pitch

25 mm

Belt width min.

100 mm

(side modules only available without FT- and without MNM-pattern)

Width increments

in increments of 25 mm

Hinge pins

Stainless steel (plastic pins can also be used for straight conveyors)

Certification

For certification see page 25.

Technical notes

Minimum curve radius $= 2 \times$ belt width. Minimum length of the straight in-feed/ out-feed section before and after the curve $= 2 \times$ belt width.

Curved modules make the continuous combination of straight and radial conveying lines possible.

Special properties

- high level of permeability
- available as a guided version with support on the outside radius

Areas used

- food industry (deep frozen goods, fish, meat)
- unit goods
- logistics
- baked goods
- spiral conveyors

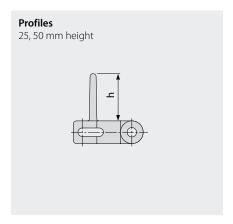
Module types

CM 25/70 S5

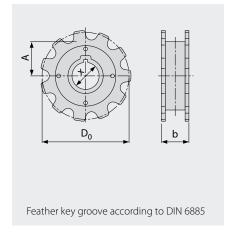
One of the strongest curved modular belts available. Curves can be combined with straight sections. With smooth surface and extremely high levels of permeability.

CM 25/70 S5 G

With the same properties as CM 25/70 S5. Profiles at the sides under the support prevent the belt edge from popping up in the curve. Makes greater loads and longer lines per drive possible.

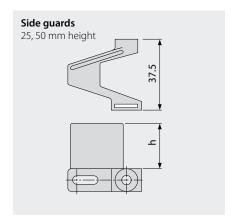

CM 25/70 S5 MNM

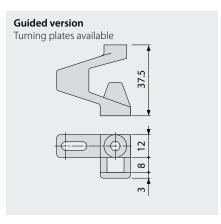
With integrated small studs made of plastic material (Ø 3 – 4 mm, height 4 mm). For better grip of soft goods during inclined conveying (e.g. meat.)

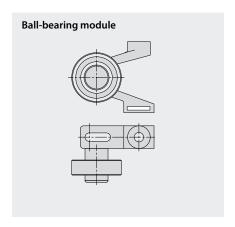

CM 25/70 S5 FT

Fitted with TPE studs. For good and careful grip of hard conveyed goods (e.g. inclined conveying of boxes.)

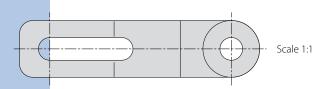
Profiles/side guards/ special modules

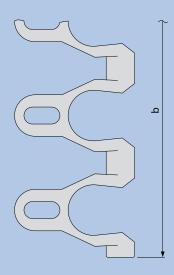

Materials	Colours	Permeability [%]	C ₃ max [N/mm] (Straight)	C ₃ max [N] (Curves)	Weight [kg/m²] (Stainles steel pins)
PE	W	70	10	-	11
PP	W	70	18	1000	10
POM	TR	70	25	1800	13
PE	W	70	10	-	11
PP	W	70	18	1500	10
POM	TR	70	25	2000	13
PE	W	70	10	-	11.2
PP	W	70	18	1000	10.1
POM	TR	70	25	1800	13.2
РР	W	70	18	1000	

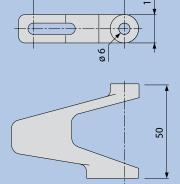



Type/ no. of teeth	CS 25-11			
b [mm]	29			
$D_0[mm]$	89			
A [mm]	38			
m [g]	110			
x [mm] (metric	shaft	reces	ses)	
25	•			
30	•			
40				

- Shaft shape round Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module


The fold-out page at the back will explain all abbreviations used and the type key.





Curved modules, pitch 50 mm

Main dimensions in mm (Scale 1:2)

Pitch

50 mm

Belt width min.

100 mm

(side modules only available without MNM-pattern)

Width increments

in increments of 50 mm

Hinge pins

Stainless steel (plastic pins can also be used for straight conveyors)

Certification

For certification see page 25.

Technical notes

Minimum curve radius $= 2 \times$ belt width. Minimum length of the straight in-feed/ out-feed section before and after the curve $= 2 \times$ belt width.

Curved modules make continuous combination of straight and radial conveying lines possible.

Special properties

- high level of permeability
- available as a guided version with support on the outside radius

Areas used

- food industry (deep frozen goods, fish, meat)
- unit goods
- logistics
- baked goods
- spiral conveyors

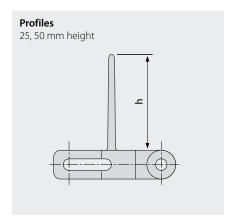
Module types

CM 50/70 S5

One of the strongest curved modular belts available. Curves can be combined with straight sections. With smooth surface and high levels of permeability.

Particularly suitable for spiral curves.

CM 50/70 S5 G

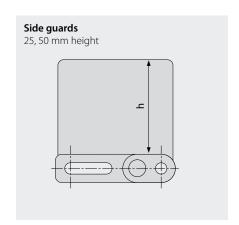

With the same properties as CM 50/70 S5. Profiles at the sides under the support prevent the belt edge from popping up in the curve. Makes higher loads and longer sections per drive possible.

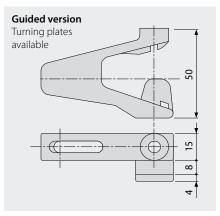
Strongest type in the curved range.


CM 50/70 S5 MNM

For better grip of soft goods in inclined conveying (e.g. meat.)

Profiles/side guards/ special modules

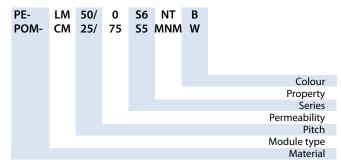

Materials	Colours	Permeability [%]	C ₃ max [N/mm] (Straight)	C ₃ max [N] (Curves)	Weight [kg/m²] (Stainles steel pins)
PE	W/LGY	70	12	-	9.5
PP	W/LGY	70	22	1600	9.3
POM	TR/LGY	70	30	2800	11.5
PE	W/LGY	70	12	-	9.5
PP	W/LGY	70	22	1600	9.3
POM	TR/LGY	70	30	2800	11.5
PE	W	70	12	-	9.7
PP	W	70	22	1600	9.4
POM	TR	70	30	2800	11.7



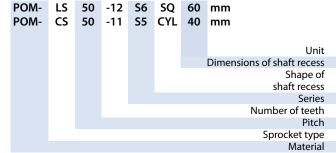
Type/ no. of teeth	CS 50-11			
b [mm]	49			
$D_0[mm]$	177			
A [mm]	81			
m [g]	560			
x [mm] (metric	shaft •	recess	ses)	

- Shaft shape round
- Shaft shape square
- A Distance centre of shaft/top edge supportm Weight of the module

The fold-out page at the back will explain all abbreviations used and the type key.


Overview of areas used

			Fru	uit an	d veg	getak	oles						Bak	ed g	oods				Meat and poultry							
	Cleaning	Draining	Elevator	Sorting	Standard conveying	Deep freezing	Palletizing/de-palletizing	Container conveying	Sterilising/cooling	Emptying moulds	Cleaning tunnels	Cooling/freezing	Standard conveying	Decorating/glazing	Metal detectors	Conveying sheets/moulds	Laminating	Packaging	Cutting/jointing	Trimming	Cooling/freezing	Standard conveying	Elevators	Metal detectors	Packaging	
Series 1																										
LM 50/0	•		•	•	•					•	•					•		•								
LM 50/20		•	•		•	•					•															
LM 50/0 NS																										
LM 50/0 FT																										
C 2																										
Series 2																										
LM 25/0				•	•								•	•		•	•	•				•		•	•	
LM 25/15																								•		
LM 25/45	•	•				•		_	•			•			•		•									
LM 25/45 RR						•	•	•	•			•			•											
LM 25/0 FT							•	•																	•	
Series 3																										
LM 50/0			•	•	•		•	•		•			•	•		•		•			•	•	•	•	•	
LM 50/20	•	•	•		•	•			•		•											•	•	•		
LM 50/0 LR																						•	•			
LM 50/20 LR																						•	•			
Series 4																										
LM 14/0																										
LM 14/20												•	•	•	•		•	•				•		•	•	
LIVI 14/20																										
Series 5																										
CM 25/70	•	•			•	•			•	•	•	•	•		•	•					•		•	•	•	
CM 25/70 MNM																						•			•	
CM 25/70 FT																									•	
CM 50/70	•	•				•			•		•	•	•			•					•		•	•		
CM 50/70 MNM																										
Series 6																										
LM 50/0																			•	•		•	•	•	•	
LM 50/0 CT																							•	•		
LM 50/0 NT																						•	•	•	•	
Series 7																										
LM 40/0																										
LM 40/15																										
LM 40/0 NS																										
LM 40/15 NS																										
LM 40/0 FT																										
										l						1					1					


			Fish				Α	uton	notiv	e	Lo	gisti	cs				Othe	er app	olicat	ions				
Elevators	Draining	Inspection benches	Standard conveying	Freezing/decorating	Metal detectors	Packaging	Vehicle conveying	Vehicle conveying	Skid conveying	Worker belts	General logistics	Package sorting	Airports	Textiles industry	Glass industry	Deep freezing/freezing towers	Dairy products	Conveying people	Ski lift/access belts	Unit goods	Palette conveyors	Paper	Corrugated cardboard	
•	•	•	•	•		•		•		•	•		•				•	•	•	•		•		
																		•	•					
		•	•			•		•					•	•	•		•					•		
															•		•							
			•			•											•			•				
•	•	•	•	•		•									•		•		•					
					•	•								•	•		•			•		•	•	
	•			•	•						•	•				•								
						•		•				•					•							
	•							•			•	•				•	•							
•		•	•		•	•									•		•			•				
			•		•	•		•				•					•							
							•		•									•		•	•			
							•			•								•						
								•												•	•			
I	I	I																						

Type key, key, notes

Modules type key

Sprockets type key

Key

Mate	rıaı	
PE	=	Polyethylene
PP	=	Polypropylene
POM	=	Polyoxymethylene (Polyacetal)
PA	=	Polyamide
PBT	=	Polybutylenterephthalate
RS	=	Stainless steel

Mod	lule t	type
CM	=	curved module
LM	=	linear module
PM	=	profile module
SG	=	side profile
SM	=	side module

Spre	ocket	type	
CS	=	sprocket for curved belts	
LS	=	sprocket for linear belts	

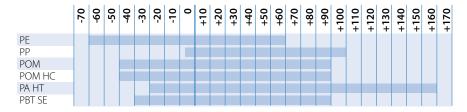
Modu	ıle p	roperties
BT	=	for ball-bearing recess
CT	=	conical surface structure
FT	=	rubber inserts on the
		top face of module
G	=	guided (curved) module
LR	=	lateral ribbing on the
		top face of module
MNM	=	grip studs on the
		top face of module
MOD	=	(specifically) modified
		module shape
NS	=	anti-skid surface pattern
NT	=	cylindrical surface pattern
RR	=	additional ribbing on
		top face of module
GS	=	lattice pattern on
		top face of module

	pro	cket	properties
(CYL	=	cylindrical (shape of the shaft
			recess in sprockets)
9	SQ.	=	square (shape of the shaft
			recess in sprockets)

Mate	erial	properties
HC	=	anti static material
HT	=	suitable for high temperatures
MD	=	type of material detectable in metal detectors
SE	=	flame retardant

Colo	urs		
ΑT	=	anthracite	
В	=	blue	
BE	=	beige	
BK	=	black	
DB		dark blue	
LGY	=	light grey	
Ο	=	orange	
R	=	red	
TR	=	transparent	
W	=	white	
Υ	=	yellow	

Colours can vary from the original due to the print, production processes or material used.


C₃max = maximum level of pull allowed in [N/mm belt width] or maximum level of pull allowed in [N] (only for curved belts)

Materials/permeability/ temperature ranges/HACCP types

Permeability and patterns

Permeability	Surface pattern	Series	1	2	3	4	5	6	7
0%	None (smooth)		•	•	•	•		•	•
0 %	LR (Lateral Rib)				•				
0%	NS (Non Skid)		•						•
0 %	FT (Friction Top)		•						•
0 %	CT (Cone Top)							•	
0 %	NT (Nub Top)							•	
15 %	None (smooth)			•					•
15 %	NS (Non Skid)								•
20 %	None (smooth)		•		•	•			
20 %	LR (Lateral Rib)				•				
45 %	None (smooth)			•					
45 %	RR (Raised Rib)			•					
70 %	None (smooth)						•		
70 %	FT (Friction Top)						•		
70 %	MNM (Grip Profiles)						•		

Temperature ranges in °C

HACCP types/certification

Siegling ProLink modular belts made of PE, PP and POM are FDA compliant and in line with the EU-directive 2002/72/EC as regards the raw materials used and the total migration levels and are in many cases USDA-approved.

Siegling ProLink modules and additional elements (hinge pins, side guards) are available made of PE and some of POM, even as HACCP-types.

The mechanical properties of materials are not changed because belts are HACCP types.

We use new materials for the HACCP types that don't provide any nutrient bases for micro-organisms to grow and multiply. Without applying biocidal additives that can migrate from the material, belts are protected from microbial attack – reliably and safely (as long as regular cleaning is carried out.)

Lab trials show that attack from for example E-Coli bacteria, in comparison to standard materials, is reduced by 99.5 % (test bacteria Escherichia coli (DSM), film contact method, 37 °C/24 h. Study by the Ahlemer Institute in Hanover).

All materials and raw materials used in the HACCP types comply with EU guideline 2002/72/EC and/or AP 96/(5), and are BfR and FDA approved.

Materials

Polyethylene (PE)

- very good chemical resistance to acids and alkalis
- very good release properties due to low tension on the surface
- good friction and abrasion behaviour
- extremely tough
- low specific weight

Polypropylene (PP)

- standard material for normal conveying applications
- quite strong and stiff
- good dynamic capacity
- highly resistant to acids, alkalis, salts, alcohols
- low specific weight
- no risk of stress cracks forming

Polyoxymethylene (POM)

- very dimensionally stable
- very strong and stiff
- very good chemical resistance to organic solvents
- lower drag against many goods
- very durable material
- hard, incision-resistant surface

Antistatic material POM HC (High Conductivity)

- antistatic materials
- resistance $< 10^6 \Omega$ (according to specification)
- very strong and stiff
- very good friction and abrasion properties

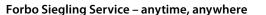
Flame retardant material PBT SE (flame retardant)

- flame retardant according to UL94-V0
- very strong and stiff, slightly less than POM
- extremely durable

Highly temperature resistant material PA HT (High Temperature)

- material reinforced with fibre glass
- very high short-term temperature resistance up to >180 °C
- absorbs little water in humid environments
- very stiff
- durable

Metal sensor material POM MD (Metal Detectable)


- material easily detected in metal detectors
- very strong and stiff
- very good tribological properties (friction and abrasion levels)

Committed staff, quality-orientated organisation and production processes ensure the constantly high standards of our products and services.

The Forbo Siegling Quality Management System is certified in accordance with DIN-EN ISO 9001:2000.

In addition to product quality, environmental protection is an important corporate goal. Early on we also introduced an environmental management system, certified in accordance with ISO 14001.

In the company group, Forbo Siegling employs more than 2000 people worldwide. Our production facilities are located in eight countries; you can find companies and agencies with stock and workshops in more than 50 countries. Forbo Siegling service centres provide qualified assistance at more than 300 locations throughout the world.

Forbo Siegling GmbH Lilienthalstrasse 6/8, D-30179 Hannover Phone +49 511 6704 0, Fax +49 511 6704 305 www.forbo-siegling.com, siegling@forbo.com